

DROP TESTING FOR HIGH RELIABILITY APPLICATIONS

P. Snugovsky, J. Bragg (jbragg@celestica.com), M. Romansky

Celestica International Inc.

*A. Ganster, #W. Russell, **J. P. Tucker, **C. A. Handwerker, ##D.D. Fritz *Crane NSWC, #Raytheon, **Purdue University, ##SAIC

- Pb-free: reality for military applications due to part constraints
- Harsh environments have high mechanical reliability requirements
- Mechanical reliability concerns due to:
 - □ Pb-free COTS SMT components prone to fracture
 - Little known about the affect of rework
 - □ Even less known about rework of Pb-free joints with SnPb
- Robustness of electronics in harsh environments should include drop testing
 - □ High strain and strain rate conditions

- Investigate specific need of military:
 - Mechanical shock robustness of Pb-free components reworked with SnPb solder
 - □ Military prefers one rework solution in the field
 - □ Simpler than controlling both a SnPb and a Pbfree rework process

×

Project Overview

- Board-level drop shock test was performed on 29 assemblies
 - ☐ 63 parts / board
 - □ Parts representative of current military package styles
- Assembled on Pb-free compatible laminate with SAC 305 solder
- Metallurgical characterization
- Assemblies fixtured to drop table and subjected to 500Gs for 10-20 drops
- In-situ shock response, net resistance and strain recorded
- Physical FA performed to characterize mechanical damage

M

Test Vehicle Details

- Test vehicle designed by:
 - □ Joint Group on Pollution Prevention (JG-PP)
 - □ National Aerospace Agency (NASA)
 - □ Department of Defense (DoD)
- Designed to meet IPC-6012, Class 3 requirements
 - □ 6 layer board with 0.5-ounce copper
 - □ Pb-free FR4 laminate as per IPC-4101/26
 - □ Minimum Tg of 170 °C
 - ☐ Immersion Ag finish

M

Test Vehicle Components

Package	Ball or Finish	Dimensio ns (mm x mm)	Pitch (mm)
PBGA225	SAC405 or SnPb	27 x 27	1.5
CSP100	SAC 105	10 x 10	0.8
TQFP-144	Matte Sn	20 x 20	0.5
TSOP-50	Sn	10 x 20	0.8
	SnBi	10 x 20	0.8
PDIP-20	NiPdAu	7.5 x 26	2.5
	Sn	7.5 x 26	2.5
CLCC-20	SAC305	9 x 9	0.8
QFN	Matte Sn	5 x 5	0.6

CLCC-20

TSOP-50

- Conductive: solder iron based rework on:
 - TSOP
 - TQFP
 - CLCC (tack wrap procedure)
- Conductive processes as per IPC-7711:
 - Solder wicking & vacuum extraction
 - Heat, lift part, pad cleaning
 - Part placement & fluxing
 - Drag solder replacement & cleaning
- Convective: hot air (N₂) rework for QFN, CSP and BGA devices

Solder Joint Microstructure Characterization

Microstructure Characterization

- Investigated metallurgy of 4 parts:
 - 1. TQFP (Cu lead frame)
 - 2. TSOP (alloy 42 lead frame)
 - 3. QFN (Cu lead frame)
 - 4. BGA (SnPb balls reworked with Pb-Free paste)
- Investigated under 3 conditions:
 - 1. As-assembled SAC 305
 - 2. 1x rework with SnPb solder
 - 3. 2x rework with SnPb solder
- SEM / EDX was used to characterize intermetallics

TQFP-144

Microstructure Characterization

Microstructure of SAC305 solder joints before rework (SEM 1000x) LHS = TQFP (Cu), RHS = TSOP (alloy 42)

Microstructure after Rework

Microstructure of SAC 305 reworked using SnPb solder (SEM, 1000x) LHS = TQFP (Cu), RHS = TSOP (alloy 42)

Microstructure Characterization

Microstructure Characterization

Mixed SnPb-ball/Pb-free solder joint

Drop Testing

Experimental – Drop Test

Drop Table with Fixtured/Wired Test Vehicles

M

Drop Test Electrical Results

- Vast majority of electrical failures were PBGAs
 - Wide range in # of drops until failure
 - 40% failed electrically within less than 6 drops
 - 99% failed electrically by 20 drops
 - Pad cratering is the predominant failure mode
- All CSPs electrically passed drop testing
- Less than 1% of non-BGA components electrically failed after 20 drops

Mechanical Failures

Blue Dots on Some Parts = # of SnPb Hand Reworks

Mechanical Failures Non-BGAs

Partial Solder Fracture (QFN-20, 2x rework)

Partial Pad Crater (QFN-20, 1x rework)

Failure Analysis of Non-BGA Failures

Electrical Fails – Non-BGAs

- Only 4 non-BGA electrical fails (< 1%)
 - □ Board # 1, CLCC-20, U14 was not reworked
 - □ Board # 2, TQFP 144, U57 was reworked 1x with SnPb
 - □ Board # 3, PDIP-20, U8 was reworked 1x with SnPb
 - □ Board # 4, QFN-20, U15 was reworked 2x with SnPb

W

Physical FA – Non BGAs

- Eight cards selected for FA:
 - 23 parts dye & pried
 - 15 parts cross-sectioned
- Dye & pry and cross-sectioning were used to determine:
 - Failure location
 - Failure mode, and
 - Failure mechanism

FA Results – Non BGAs

Solder Fracture (TQFP-144)

Pad Crater with Trace Break (CLCC)

FA Results - Non-BGAs

Solder Fracture, Full Dye Penetration (QFN, lead 2)

Pad Crater,
Partial Dye Penetration (CLCC)

M

Summary – Non-BGAs

- Majority of non-BGA components survived drop testing
 - SnPb reworked parts are no less reliable than their Pb-free asmanufactured counterparts
 - In-field rework of Pb-free parts with SnPb solder should not affect mechanical robustness
- Both electrical and mechanical damage was at a minimum for non-BGA parts
 - □ Predominant failure mechanism was pwb-side pad cratering
- Of parts subjected to FA ~1/3 the passed electrical test had mechanical damage

Failure Analysis of BGA Failures

Electrical Results - BGAs

High Strain Area

Low Strain Area

Electrical Results – BGA Rework

Number of Rework Cycles

BGA Failure Analysis

Predominant failure mechanism: pad cratering

Dye and Pry

Cross-Sectioning

- For non-BGAs No difference in drop test performance between SnPb-reworked and Pb-free joints
- Component *location* on the board plays a large role
- Component type plays a large role in drop test results
 - □ Non-BGAs and CSPs are mechanically robust package styles
 - □ 256 PBGAs: Mechanical damage occurs after only a few drops

- Significant mechanical damage occurs well before electrical failure
- BGAs can fail after very few drops
- Mixed solder joints fail sooner than pure SnPb BGAs
- Reworking reduces the mechanical robustness of BGAs
- Predominant failure mechanism is pad cratering

Thank You